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Abstract

In the discipline of non-Newtonian materials, the ability to control
viscoelastic stresses is very desirable in ascertaining important prop-
erties of the influenced materials. We apply the nonlinear geometric
control theory to examine the controllability of various popular consti-
tutive models with imposed homogeneous extensional flow. The subse-
quent constitutive laws considered here include the Phan-Thien-Tanner
model, the Johnson-Segalman model, the Giesekus model and the Doi
model. This paper provides the first analysis on the effect of extensional
flow on these models.

1 Introduction

For the design of certain materials, controllability of viscoelastic fluids is
a significant characteristic. In practice, the shape of an extrudate can be
controlled by varying the size or shape of an orifice, whereas the advance of
the free surface can be controlled by varying the inflow into a mold.

Previous theoretical studies from Renardy [[Renardy, 2005a], [Renardy, 2005b],
[Renardy, 2007]] investigated the controllability of flows of linear viscoelas-
tic fluids for the multi-mode Maxwell models, the controllability of the ho-
mogeneous shear flow of viscoelastic fluids with several different constitutive
models, and the controllability of nonhomogeneous shear flow of an upper
convected Maxwell fluid. Very recent studies have examined the control-
lability of the upper convected Maxwell model under various homogeneous

1Corresponding author, hzhou@nps.edu
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flows [[Zhou et al., 2007]]. Furthermore, the reachable set for the upper con-
vected Maxwell model under imposed extensional flow was precisely specified
in [[Zhou et al., 2007]] even though it is usually very challenging for general
cases. In most of these studies the state of the system is characterized by the
viscoelastic stresses while the control input is in the form of the flow rate or
the body force.

The primary purpose of this paper is to further these earlier studies to
consider the controllability of three different model systems under the imposed
homogeneous extensional flow. Like shear flow, the extensional flow is also very
important in physical applications. For example, extensional flow can be used
to locally approximate the flow away from boundaries in extrusion manufactur-
ing or in thin film and sheet manufacturing; an extension-dominated flow oc-
curs in industrial wire-coating processes along the wire-coating region beyond
the die. Following earlier studies, we restrict our attention to two-dimensional
models. This is mainly due to its mathematical simplicity and is also physi-
cally motivated by monolayer thin flims. Admittedly two-dimensional models
are ideal situations but we can’t hope to understand the controllability of more
realistic cases unless we understand the controllability of simpler ones.

For reader’s convenience, we now present on overall basic definition and
description of weak controllability adopted from [[Isidori, 1995]].

Let

ẋ = f(x) +

m∑
i=1

gi(x)ui (1)

be a general nonlinear control system, where x is the state variable, and ui ∈ R,
i = 1, · · · , m, are the control variables. Let M denote the manifold of state
variables. A point x1 in M is reachable from a point x0 in M if there exist
piecewise continuous input functions, ui = αi(t), such that the trajectory, x(t),
of (1) with initial state x0 reaches x1 in finite time. The global reachability is
usually hard to prove for nonlinear control systems. A feasible solution is to
seek weak controllability. The system (1) is weakly controllable within some
open subset S ⊆ M if for each point x0 ∈ S, there is an open neighborhood
U0 of x0 so that the set of points reachable from x0 along trajectories inside
U0 contains at least an open subset of M .

In (1), f(x) and gi(x) (i = 1, · · · , m) are vector fields in M . Under the
Lie bracket operation, [f, g], the space of smooth vector fields on M forms a
Lie algebra. This Lie algebra, which is the smallest subalgebra containing the
vector fields f , g1, · · ·, gm, is called the Control Lie Algebra.

A powerful sufficient condition on the weak controllability of a nonlin-
ear control system is the contollability rank condition (CRC) [[Isidori, 1995],
[Hermann and Krener, 1977]]. Namely, a control system of the form (1) is
weakly controllable on an open set S if it satisfies the controllability rank
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condition on S, i.e.,
dim(ΔC(x)) ≡ n (2)

for all x ∈ S, where n is the dimension of the manifold M , and

ΔC(x) = span{X(x)|Xis a vector field in the control Lie algebra}.

Note that the big advantage of the CRC is that it is purely algebraic and it
does not require integrations of the differential equations.

2 The Phan-Thien-Tanner Model

The Phan-Thien-Tanner (PTT) model is one of the most applied differen-
tial type of the nonlinear viscoelastic constitutive equations. It contains two
parameters that control nonlinearity and has the ability to fit, to some extent,
the shear and elongational properties of the viscoelastic materials indepen-
dently. Thus, the Phan-Thien-Tanner model is physically more realistic than
the constant shear viscosity Oldroyd-B model or upper-convected Maxwell
model.

The Phan-Thien-Tanner model has the constitutive equation
[[Phan-Thien and Tanner, 1977]]

Ṫ − (∇v)T − T(∇v)T + λT + ν(trT)T = 2μD, (3)

where T is the stress tensor, v is the velocity vector, ∇v is the velocity gradient
tensor, λ is the relaxation rate, ν is a constant, the notataion “tr” stands for the
trace of the tensor, μ is the elastic modulus and D is the rate-of-deformation
tensor.

We consider 2-D homogeneous viscoelastic fluids and denote the stress ten-
sor and the imposed extensional flow with rate γ̇(t) by

T =

[
T11 T12

T12 T22

]
, v = (γ̇(t)

x

2
,−γ̇(t)

y

2
), (4)

respectively, where T11 is the first normal stress difference, T22 the second
normal stress difference and T12 the shear stress. Suppose the control input is
denoted by γ̇ which is closely related to the velocity. Then the general dynamic
problem of the PTT model (3) takes the form

Ṫ = F(γ̇(t),T), T(0) = T0, T(tfinal) = T1, (5)

where T0 and T1 are the given initial and final states. The state of the system
(5) is characterized by viscoelastic stress T with three components T11, T22

and T12.
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For the extensional flow in (4), the velocity gradient is

∇v =

⎡
⎢⎣

γ̇(t)

2
0

0 − γ̇(t)

2

⎤
⎥⎦ , (6)

which implies that the rate-of-strain tensor is

D =
1

2
[∇v + (∇v)T ] =

γ̇(t)

2

[
1 0
0 −1

]
. (7)

Applying the velocity gradient (6) and the rate-of-strain tensor (7) to the PTT
system (3), we have in component form that

Ṫ11 = −[λ + ν(T11 + T22)]T11 + (μ + T11)γ̇(t)

Ṫ22 = −[λ + ν(T11 + T22)]T22 − (μ + T22)γ̇(t)

Ṫ12 = −[λ + ν(T11 + T22)]T12

(8)

For mathematical convenience, the following notation is introduced:

�x =

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ T11

T22

T12

⎤
⎦ . (9)

Then the system (8) can be rewritten as

d�x

dt
= �f(�x) + �g(�x)u, (10)

where

�f(�x) = −[λ + ν(x1 + x2)]�x, �g(�x) =

⎡
⎣ μ + x1

−(μ + x2)
0

⎤
⎦ , u = γ̇(t). (11)

The first Lie bracket is defined by

[�f,�g] = ∇�g · �f −∇�f · �g =

⎡
⎣ νx1(x1 − x2) + μ(λ + νx1 + νx2)

νx2(x1 − x2) − μ(λ + νx1 + νx2)
ν(x1 − x2)x3

⎤
⎦ . (12)

Similarly, the second Lie bracket is given by

[�f, [�f,�g]] = ∇[�f,�g]· �f−∇�f ·[�f,�g] =

⎡
⎣ −νλx1(x1 − x2) + μλ[λ + ν(x1 + x2)]

−νλx2(x1 − x2) − μλ[λ + ν(x1 + x2)]
−νλ(x1 − x2)x3

⎤
⎦ .

(13)
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Utilizing the vectors from �g(�x), the two Lie brackets (12) and (13), one con-
tructs a matrix. By investigating the rank of this matrix, the weak control-
lability can be characterized. More specifically, if the matrix is full rank or
nonsingular, then the system is weakly controllable; if the matrix is not full
rank or singular, then this approach offers no insight to the weak controllability
of the system and one has to seek more advanced tools.

We now compute the determinant and obtain

det
[
�g, [�f,�g], [�f, [�f,�g]]

]
= 2μλνx3[λ + ν(x1 + x2)](x1 − x2)

2. (14)

The determinant does not equal zero when x3 �= 0, x1+x2 �= −λ/ν and x1 �= x2.
It can be concluded that the system of the PTT model under extensional flow
satisfies the CRC and thus is weakly controllable when T12 �= 0, T11 + T22 �=
−λ/ν and T11 �= T22. This result can be summarized geometrically as follows.

Given R3 = {(x1, x2, x3)|x1, x2, x3 ∈ R}, there exist three surfaces:

S1 = {(x1, x2, x3)|x3 = 0}
S2 = {(x1, x2, x3)|λ + ν(x1 + x2) = 0}
S3 = {(x1, x2, x3)|x1 = x2}

such that the PTT model (3) under extensional flow is weakly controllable at
all points in R3 \ {S1 ∪ S2 ∪ S3}.

3 The Johnson-Segalman model

The Johnson-Segalman model characterizes the behavior of non-Newtonian
fluids, including special cases of Newtonian and Maxwell fluids. Additionally,
it is a viscoelastic fluid model which was developed to allow non-affine defor-
mations [[Johnson and Segalman, 1977]].

The Johnson-Segalman (JS) model gives a viscoelastic constitutive equa-
tion in the form

Ṫ−a + 1

2

[
(∇v)T + T(∇v)T

]−a − 1

2

[
(∇v)TT + T(∇v)

]
+λT = 2μD. (15)

Here a is a parameter describing polymer slip where −1 < a < 1; When a = 1,
the model (15) reduces to the Oldrody-B model.

Analogous to the previous model, we now apply the gradient of the homo-
geneous extensional flow (6) to the JS system (15) which leads to

Ṫ11 = −λ T11 + (μ + aT11)γ̇(t)

Ṫ22 = −λ T22 − (μ + aT22)γ̇(t)

Ṫ12 = −λT12

(16)
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Note that the third equation in (16) can be solved exactly such that T12 =
T12(0)e−λt. Consequently, the Johnson-Segalman model (16) is not weakly
controllable under extensional flow. Nonetheless, the state space has a stable
invariant subspace T12 = 0. It is in this subspace that all trajectories of the
system, under any control input, asymptotically move toward the subspace
T12 = 0. As a result, the decisive behavior of the control system (16) can be
characterized by a reduced subsystem on this stable subspace:

Ṫ11 = −λ T11 + (μ + aT11)γ̇(t),

Ṫ22 = −λ T22 − (μ + aT22)γ̇(t),

(17)

which can be put in a compact form

d�x

dt
= �f(�x) + �g(�x)u,

where

�x =

[
x1

x2

]
=

[
T11

T22

]
, �f(�x) = −λ�x, �g(�x) =

[
μ + ax1

−(μ + ax2)

]
, u = γ̇(t).

(18)
We compute the Lie bracket and find

[�f,�g] =

[
λ μ
−λ μ

]
.

It follows immediately that

det
[
�g, [�f,�g]

]
= aλμ(x2 − x1). (19)

The determinant does not vanish when x1 �= x2. Therefore, the subsystem
(17) of the Johnson-Segalman model under extensional flow satisfies CRC and
is weakly controllable when T11 �= T22. In geometrically terms, the system (17)
is weakly controllable at all points in R2 \ S1 where

R2 = {(x1, x2)|x1, x2 ∈ R}, S1 = {(x1, x2)|x1 = x2}.

In [[Zhou et al., 2007]] we have characterized the set of reachable states for
a subsystem of the upper-convected Maxwell model under extensional flow.
We have found that for the system

Ṫ11 = −(λ − γ̇(t))T11 + μ γ̇(t)

Ṫ22 = −(λ + γ̇(t))T22 − μ γ̇(t)

(20)
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the reachable set is R1 + R0 where R1 and R0 are given by

R1 =

⎧⎪⎨
⎪⎩(T11(tf ), T22(tf ))

∣∣∣∣∣∣∣

√
(

T11(tf )

μ
+ 1)(

T22(tf )

μ
+ 1) − 1

> e−λtf [
√

(T11(0)
μ

+ 1)(T22(0)
μ

+ 1) − 1]

⎫⎪⎬
⎪⎭

and

R0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(T11(tf), T22(tf))

∣∣∣∣∣∣∣∣∣

√
(

T11(tf )

μ
+ 1)(

T22(tf )

μ
+ 1) − 1

= e−λtf [
√

(T11(0)
μ

+ 1)(T22(0)
μ

+ 1) − 1]

and T11(0) = T22(0), T11(tf ) = T22(tf)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Note that if we redefine the two parameters μ and γ̇(t) as μnew = μold

a
, γ̇new(t) =

aγ̇old(t), then the system (17) has the same form as (20). Therefore, the
reachable set for the subsystem of the Johnson-Segalman model (17) under
extensional flow is R1 + R0 where μ is replaced by μ/a.

4 The Giesekus Model

Another typical nonlinear viscoelastic fluid model is the Giesekus model
[[Giesekus, 1982]]. The constitutive relation for the Giesekus model is given
by

Ṫ − (∇v)T − T(∇v)T + λT + νT2 = 2μD. (21)

Applying the gradient of the homogeneous extensional flow (6) to (21), we
obtain

Ṫ11 = −λT11 − ν(T 2
11 + T 2

12) + (μ + T11)γ̇(t)

Ṫ22 = −λT22 − ν(T 2
12 + T 2

22) − (μ + T22)γ̇(t)

Ṫ12 = −[λ + ν(T11 + T22)]T12

(22)

which in turn can be put in the compact form

d�x

dt
= �f(�x) + �g(�x)u. (23)

Here

�x =

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ T11

T22

T12

⎤
⎦ , �f(�x) =

⎡
⎢⎢⎣

−λx1 − ν(x2
1 + x2

3)

−λx2 − ν(x2
2 + x2

3)

−[λ + ν(x1 + x2)]x3

⎤
⎥⎥⎦ ,

�g(�x) =

⎡
⎣ μ + x1

−(μ + x2)
0

⎤
⎦ , u = γ̇(t).

(24)
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The two Lie brackets are computed as follows:

[�f,�g] = ∇�g · �f −∇�f · �g =

⎡
⎣ ν(x2

1 − x2
3) + λμ + 2νμx1

νx2(−x2 − 2μ) − λμ + νx2
3

ν(x1 − x2)x3

⎤
⎦ , (25)

and

[�f, [�f,�g]] = ∇[�f,�g]·�f−∇�f ·[�f,�g] =

⎡
⎢⎢⎣

ν(x2
1 − x2

3)(−λ + 2μν) + μλ(λ + 2νx1)

ν(x2
2 − x2

3)(λ − 2μν) − μλ(λ + 2νx2)

νx3(x1 − x2)(2νμ − λ)

⎤
⎥⎥⎦ .

(26)
As a result, the determinant is found to be

det
[
�g, [�f,�g], [�f, [�f,�g]]

]
= 2μνx3(x1 − x2)(λ − νμ)2(λ − 2νμ). (27)

Clearly, the determinant does not vanish when x3 �= 0, λ �= νμ, λ �= 2νμ and
x1 �= x2. We conclude that the system of the Giesekus model under extensional
flow satisfies the CRC and thus is weakly controllable when T12 �= 0, T11 �= T22

and the parameters satisfy the constraints λ �= νμ or 2νμ. This result can be
summarized geometrically as follows.

Define two surfaces

S1 = {(x1, x2, x3)|x3 = 0},
S2 = {(x1, x2, x3)|x1 = x2}.

Then the Giesekus model (21) under extensional flow becomes weakly control-
lable at all points in R3 \ {S1 ∪ S2} provided that the parameters satisfy the
constraints λ �= νμ or 2νμ.

5 The Doi Model

The Doi model for rodlike liquid crystal polymers in a solvent is well-
known for its capability to describe both the isotropic and nematic phases
and phase transition between them. A fundamental element of the model
is the single molecule orientation distribution function. Interactions between
molecules are represented by a mean-field potential. The rodlike molecules are
also subject to Brownian force due to the fact that they interact with other
rodlike molecules and with the flow. Generally, the model is a microscopic
Smoluchowski equation or Fokker-Planck type equation for the dynamics of the
orientational distribution function coupled with a macroscopic hydrodynamic
equation [[Doi and Edwards, 1986]]. The Smoluchowski equation depicts the
convection, rotation and diffusion of the rodlike molecules.
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The full Doi orientation tensor theory is developed after the kinetic Smolu-
chowski equation is projected onto a second-moment description using various
closure rules. The major ingredient in this tensor theory is the second-moment
tensor which describes the orientational distribution of the ensemble of rodlike
macromolecules. The orientation tensor is traceless and symmetric. The phys-
ical and practical significance of the orientation tensor is that it is the basis
for micro-scale light scattering measurements of primary axes (“directors”),
degrees of molecular alignment (“birefringence”), and normal and shear stress
measurements. The study of two-dimensional liquid crystal polymers has been
physically inspired by monolayer films. Thin films of liquid crystal polymers
are used as alignment layers for liquid crystal displays because of their sta-
bility and nonlinear optical properties. A lot of theoretical and experimental
studies have been devoted to the two-dimensional Doi model (for example, see
[[Lee et al., 2006]] and references therein).

The two-dimensional Doi model is given by [[Lee et al., 2006]]

Q̇ = ΩQ − QΩ + a[DQ + QD] + aD − 2aD : Q(Q +
I

2
) − 6DrF (Q), (28)

where Q is the orientation tensor such that

Q =

[
Q11 Q12

Q21 Q22

]
, Q11 = −Q22, Q12 = Q21;

Ω is the vorticity tensor such that Ω = 1
2
[∇v − ∇vT ]; a is a dimensionless

parameter which depends on the molecular aspect ratio; D is the rate-of-strain
tensor; Dr is the rotary diffusivity; F (Q) is defined by

F (Q) = (1 − N

2
)Q − NQ2 + NQ : Q(Q +

I

2
)

and N is a dimensionless concentration of nematic polymers.
As with the previous models, the gradient of the homogeneous extensional

flow (6) is applied to the Doi system (28), yielding

Q̇11 = −6Dr

[
(1 − N

2
)Q11 + 2NQ11(Q

2
11 + Q2

12)
]
+ a(1

2
− 2Q2

11)γ̇(t),

Q̇12 = −6DrQ12

[
(1 − N

2
) + 2N(Q2

11 + Q2
12)

] − 2aQ11Q12γ̇(t).
(29)

Using the nematic relaxation time scale 1
Dr

, the flow field and orientation dy-
namics of (28) can be non-dimensionalized. The key dimensionless parameters
are then the Peclet number Pe(t) = γ̇(t)/Dr (the shear rate normalized with
respect to nematic relaxation rate) and the dimensionless concentration pa-
rameter N . Rescaling time as t̄ = tDr, the nematodynamic model (28) in the
dimensionless form becomes

Q̇11 = −6Q11

[
1 − N

2
+ 2N(Q2

11 + Q2
12)

]
+ a(1

2
− 2Q2

11)Pe(t),

Q̇12 = −6Q12

[
1 − N

2
+ 2N(Q2

11 + Q2
12)

] − 2aQ11Q12Pe(t).
(30)
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The system (30) can be written as

d�x

dt
= �f(�x) + �g(�x)u,

where

�x =

[
x1

x2

]
=

[
Q11

Q12

]
, �f(�x) = −6

[
1 − N

2
+ 2N(x2

1 + x2
2)

]
�x,

�g(�x) =

⎡
⎣ a(1

2
− 2x2

1)

−2ax1x2

⎤
⎦ , u = Pe(t).

(31)

The Lie bracket is calculated to be

[�f,�g] =

⎡
⎣ 6a

{
2x2

1[1 − N
2
− 2N(x2

1 + x2
2)] + 1

2
− N

4
+ N(3x2

1 + x2
2)

}

12ax1x2[1 + N
2
− 2N(x2

1 + x2
2)]

⎤
⎦ .

Finally, we have

det
[
�g, [�f,�g]

]
= 12a2x1x2. (32)

The determinant does not equal zero when x1 �= 0 and x2 �= 0. So the Doi
model (30) under extensional flow satisfies CRC and is weakly controllable
when Q11 �= 0 and Q12 �= 0. In terms of geometric words, the system (30) is
weakly controllable at all points in R2 \ {S1 ∪ S2} where

R2 = {(x1, x2)|x1, x2 ∈ R}, S1 = {(x1, x2)|x1 = 0}, S2 = {(x1, x2)|x2 = 0}.

6 Concluding Remarks

We have applied the controllability rank condition to the vector fields in the
Phan-Thien-Tanner model, the Johnson-Segalman model, the Giesekus model
and the Doi model to study the controllability of non-Newtonian fluids driven
by imposed homogeneous extensional flow. In our control system, the state
variable is the stress for the Phan-Thien-Tanner model, the Johnson-Segalman
model and the Giesekus model and the orientation tensor for the Doi model.
The extensional flow rate corresponds to the available control. We have derived
sufficient conditions for the weak controllability of each model.

Acknowledgment

This research was supported in part by the Air Force Office of Scientific
Research and the National Science Foundation.



Controllability of non-Newtonian fluids 2155

References

[Bird et al., 1987] [1] R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics
of Polymeric Liquids, 2nd edition, Wiley (1987).

[Doi and Edwards, 1986] [2] M. Doi and S. F. Edwards, The Theory of Poly-
mer Dynamics, Oxford University Press, New York, 1986.

[Giesekus, 1982] [3] H. Giesekus, “A unified approach to a variety of consti-
tutive models for polymer fluids based on the concept of configuration
dependent molecular mobility,” Rhelo. Acta 21 (1982), 366-375.

[Hermann and Krener, 1977] [4] R. Hermann and A. Krener, “Nonlinear con-
trollability and observability,” IEEE Trans. Automat Contr. AC-22
(1977), 728-740.

[Isidori, 1995] [5] A. Isidori, Nonlinear Control Systems, 3rd edition, Springer
(1995).

[Johnson and Segalman, 1977] [6] M. W. Johnson and D. Segalman, “A model
for viscoelastic fluid behavior which allows non-affine deformation,” J.
Non-Newtonian Fluid Mech. 2 (1977), 255-270.

[Larson, 1998] [7] R. G. Larson, The Structure and Rheology of Complex Flu-
ids, Oxford (1998).

[Lee et al., 2006] [8] J. H. Lee, M. G. Forest and R. Zhou, “Alignment and
rheo-oscillator criteria for sheared nematic polymer films in the mono-
layer limit,” Discrete and continuous dynamical systems-series B 6
(2006), 339-356.

[Nijmeijer and van der Shaft, 1990] [9] H. Nijmeijer and A. J. van der Schaft,
Nonlinear Dynamical Control Systems, Springer (1990).

[Phan-Thien and Tanner, 1977] [10] N. Phan-Thien and R. I. Tanner, “A new
constitutive equation derived from network theory,” J. Non-Newtonian
Fluid Mech. 2 (1977), 353-365.

[Renardy, 2005a] [11] M. Renardy, “Are viscoelastic flows under control or out
of control?” Systems & Control Letters 54 (2005a) 1183-1193.

[Renardy, 2005b] [12] M. Renardy, “Shear flow of viscoelastic fluids as a con-
trol problem,” J. Non-Newtonian Fluid Mech. 131 (2005b) 59-63.

[Renardy, 2007] [13] M. Renardy, “On control of shear flow of an upper con-
vected Maxwell fluid,” Z. Angew. Math. Mech. 87 (2007) 213-218.



2156 Lynda Wilson, Hong Zhou, Wei Kang and Hongyun Wang

[Zhou et al., 2007] [14] H. Zhou, W. Kang, A. Krener and H. Wang, “Homo-
geneous flow field effect on the control of Maxwell materials”, J. Non-
Newtonian Fluid Mech. 150 (2008) 104-115.

Received: January 26, 2008


